CHEM 1001 Science of Contemporary Issues I (4 Credits)
CHEM 1001 is the first class in a three-quarter sequence focused on real-world applications of chemistry. The first quarter focuses on sustainability, pollution, and climate change. To understand these topics, we will explore the behavior of gases, properties of solutions, chemical reactions in the atmosphere, and acid-base chemistry. This course cannot be taken for credit for a chemistry major or minor. A lab fee is associated with this course. The course counts toward the Scientific Inquiry: The Natural and Physical World requirement.

CHEM 1002 Science of Contemporary Issues II (4 Credits)
CHEM 1002 is the second class in a three-quarter sequence focused on real-world applications of chemistry. This course focuses on fossil fuels, renewable resources, nuclear energy, batteries, and fuel cells. To understand these topics, we will examine combustion reactions, radioactive elements, nuclear waste, and electrochemistry. This course cannot be taken for credit for a chemistry major or minor. A lab fee is associated with this course. This course counts toward the Scientific Inquiry: The Natural and Physical World requirement. Prerequisite: CHEM 1001.

CHEM 1003 Science of Contemporary Issues III (4 Credits)
CHEM 1003 is the final class in a three-quarter sequence focused on real-world applications of chemistry. This course focuses on plastics, nutrition, drugs, and genetic engineering. To understand these topics, we will learn about polymerization, macromolecules, and the chemistry behind foods such as fats, proteins, and carbohydrates. This course cannot be taken for credit for a chemistry major or minor. A lab fee is associated with this course. The course counts toward the Scientific Inquiry: The Natural and Physical World requirement. Prerequisite: CHEM 1002.

CHEM 1010 General Chemistry I (3 Credits)
The first course in the introductory chemistry sequence for natural science and engineering majors. Topics covered include atomic and molecular structure, reactions in solution, and thermochemistry. This course counts toward the Scientific Inquiry: The Natural and Physical World requirement. Co-requisite: CHEM 1240.

CHEM 1020 General Chemistry II (3 Credits)
The second course in the introductory chemistry sequence for science and engineering majors. Topics covered include thermodynamics, equilibria including acids and bases, and kinetics. This course counts toward the Scientific Inquiry: The Natural and Physical World requirement. Pre-requisites: CHEM 1010 and CHEM 1240; Co-requisite: CHEM 1250.

CHEM 1240 General Chemistry I Laboratory (1 Credit)
Laboratory to accompany CHEM 1010. Experiments illustrate aspects of atomic structure, chemical bonding and thermochemistry. Lab fee associated with this course. This course counts toward the Scientific Inquiry: The Natural and Physical World requirement. Co-requisite: CHEM 1010.

CHEM 1250 General Chemistry II Laboratory (1 Credit)
Laboratory to accompany CHEM 1020. Experiments illustrate chemical principles applied to equilibrium of acids/bases, kinetics, and thermodynamics. Lab fee associated with this course. This course counts toward the Scientific Inquiry: The Natural and Physical World requirement. Pre-requisites: CHEM 1010 and CHEM 1240; Co-requisite: CHEM 1020.

CHEM 2131 Chemistry of the Elements (3 Credits)
Descriptive chemistry of main group and transition elements including redox and coordination chemistry. Prerequisites: CHEM 1020 and CHEM 1250. Corequisite: CHEM 2141.

CHEM 2141 Chemistry of the Elements Lab (1 Credit)
Laboratory to accompany CHEM 2131. Study of reactions of main group and transition elements including redox and coordination chemistry. Lab fee associated with this course.

CHEM 2240 Introduction to Environmental Chemistry (4 Credits)
An introduction to the chemistry of the environment. Topics cover the chemistry of air, water, and soil with a special focus on the influence that humankind has on the natural environment. Course provides tools to understand environmental science from a chemical perspective. The course is a combined lecture and laboratory. Primarily for environmental science majors. Lab fee associated with this course. Prerequisites: CHEM 1010, CHEM 1020, CHEM 1040, and CHEM 1250.

CHEM 2270 Quantitative Chemical Analysis (4 Credits)
This combined lecture-laboratory course is primarily focused on understanding and applying the principles and techniques associated with making quantitative chemical measurements. Topics covered include statistics, applications of acid-base, complexation, precipitation, and redox titrations in chemical measurements, activity, electroanalytical techniques, and gravimetric analysis. Lab Fee associate with this course. Prerequisites: CHEM 2131 and CHEM 2141.

CHEM 2451 Organic Chemistry I (3 Credits)
Structure and reactions of covalent compounds of carbon. Satisfies organic chemistry requirement in chemistry, biology and related fields. Prerequisites: CHEM 2131 and CHEM 2141.

CHEM 2452 Organic Chemistry II (3 Credits)
Structure and reactions of covalent compounds of carbon. Satisfies organic chemistry requirement in chemistry, biology and related fields. Prerequisite: CHEM 2451 and CHEM 2461.
CHEM 2453 Organic Chemistry III (3 Credits)
Structure and reactions of covalent compounds of carbon. Satisfies organic chemistry requirement in chemistry, biology and related fields.
Prerequisite: CHEM 2451, CHEM 2452, CHEM 2461, and CHEM 2462.

CHEM 2461 Organic Chemistry Lab I (1 Credit)
Laboratory course in theory and practice of preparative and analytical organic chemistry, including introduction to IR and NMR spectroscopy. Lab fee associated with this course. Co-requisite: CHEM 2451.

CHEM 2462 Organic Chemistry Lab II (1 Credit)
Laboratory course in theory and practice of preparative and analytical organic chemistry, including introduction to IR and NMR spectroscopy. Lab fee associated with this course. Co-requisite: CHEM 2452.

CHEM 2463 Organic Chemistry Lab III (1 Credit)
Laboratory course in theory and practice of preparative and analytical organic chemistry, including introduction to IR and NMR spectroscopy. Lab fee associated with this course. Co-requisite: CHEM 2453.

CHEM 3110 Chemical Systems I (3 Credits)
Advanced discussion of modern concepts of organic chemistry; bonding, stereochemistry, reaction mechanisms. Prerequisites: CHEM 2453 and equivalent of one year of physical chemistry.

CHEM 3120 Chemical Systems II (3 Credits)
Interpretation of trends in the chemistry of the elements in terms of orbital interactions. Most examples will be taken from the third row transition metals and the boron and carbon groups. Prerequisites: CHEM 2131, CHEM 3310 and CHEM 3110.

CHEM 3130 Chemical Systems III (3 Credits)
Advanced-level physical biochemistry course intended for advanced-level undergraduates and graduate students. Focuses on kinetic, thermodynamic and dynamic aspects of biopolymers; delineates the relationship of these properties to the mechanism and function of biological macromolecules. Prerequisites: CHEM 3811, CHEM 3812, CHEM 3813, CHEM 3610 or the equivalent.

CHEM 3210 Instrumental Analysis (4 Credits)
Course focus is toward students' understanding of instrumental components and the theory behind both component's and instrument's operation. Emphasis is on techniques such as spectroscopy and chromatography. Students will experience extensive hands-on use of a number of instruments. Course provides a strong background for Chemistry Frontiers (CHEM 3500) and emphasizes techniques and skills sought by chemical and biotechnology industries. Lab fee associated with this course. Prerequisites: CHEM 2011 or CHEM 2270.

CHEM 3220 Advanced Analytical Chemistry (3 Credits)
Principles of chemical instrumentation applied to analytical measurements; principles, instrumentation and applications of spectrometric and chromatographic measurements. Prerequisites: CHEM 3210 and CHEM 3621, or the equivalent.

CHEM 3310 Structure and Energetics I (3 Credits)
Fundamentals of quantum chemistry, and introduction to symmetry and molecular structure of small and large systems. Prerequisite: one year of physical chemistry.

CHEM 3320 Structure and Energetics II (3 Credits)
Computational methods in chemistry. Prerequisites: CHEM 3310, one year of physical chemistry.

CHEM 3410 Atmospheric Chemistry (3 Credits)
The concepts of equilibrium thermodynamics, kinetics, and photochemistry will be applied to understanding atmospheric processes. Covers urban air pollution in detail with focus on primary pollutants. Also covers stratospheric chemistry with focus on ozone chemistry and the chemistry of climate change. Prerequisites: (CHEM 2270 and CHEM 2453) OR CHEM 2240.

CHEM 3411 Aquatic Chemistry (3 Credits)
The circulation of the oceans and their chemical make-up. 'Classical water pollution problems' like biological oxygen demand and turbidity are discussed. Also presented: aquifer structure and flow, ground water chemistry, pollutant partitioning between stationary and mobile phases, heterogeneous surface chemistry, and the detection of trace contaminants. Prerequisites: (CHEM 2270 and CHEM 2453) or CHEM 2240.

CHEM 3412 Environmental Chemistry & Toxicology (3 Credits)
a survey of environmental toxicology concepts: animal testing, dose-response data, epidemiology, risk assessment. The course includes ecotoxicology, focusing on the alteration of biological and chemical systems beyond the simple response of an individual to an environmental chemical. Prerequisites: (CHEM 2270 or CHEM 2011) and CHEM 2453.

CHEM 3500 Chemistry Frontiers (3 Credits)
Advanced-level laboratory course required for all undergraduates majoring in chemistry or environmental chemistry. Emphasis on the development of oral, written, computer and presentation skills necessary for success as a scientist. Skills will be honed through state-of-the-art laboratory experiences from diverse areas of chemistry. Lab fee associated with this course. Prerequisites: CHEM 3210 and CHEM 3610.

CHEM 3610 Physical Chemistry I (3 Credits)
Fundamentals of thermodynamics, including phase and reaction equilibria, properties of solutions, and electrochemistry needed for advanced study in life sciences and for Physical Chemistry II and III. May be taken for graduate credit by nonchemistry majors. Prerequisites: CHEM 2453, calculus and physics.
CHEM 3620 Physical Chemistry II (3 Credits)
Fundamentals of quantum chemistry, including theories of atomic and molecular structure and spectroscopy. May be taken for graduate credit by nonchemistry majors. Prerequisite: CHEM 3610.

CHEM 3621 Physical Chemistry III (3 Credits)
Fundamentals of kinetic theory and statistical mechanics. May be taken for graduate credit by nonchemistry majors. Prerequisite: CHEM 3620.

CHEM 3703 Topics in Organic Chemistry (3 Credits)
May include organic photochemistry, organic synthesis, organic electrochemistry or natural products. May be repeated for credit. Prerequisites: CHEM 3110 or equivalent and others depending on topic.

CHEM 3705 Topics in Biochemistry (3,4 Credits)
May include physical techniques for exploring biological structure, biological catalysis, and selected fields within biochemistry taught from original literature. May be repeated for credit. Prerequisites: CHEM 3831 and 3813.

CHEM 3811 Biochemistry-Proteins (3 Credits)
Protein structure and function, starting with the building blocks and forces that drive the formation of protein structure and the basic concepts of protein structure, and continuing with enzyme catalysis, kinetics, and regulation. Prerequisites: CHEM 2453 or instructor permission.

CHEM 3812 Biochemistry-Membranes/Metabolism (3 Credits)
Membranes and membrane mediated cellular processes, energy and signal transduction, and metabolic/biosynthetic pathways. Prerequisite: CHEM 3811 or CHEM 3831.

CHEM 3813 Biochemistry-Nucleic Acids (3 Credits)
Molecular processes underlying heredity, gene expression and gene regulation in prokaryotes and eukaryotes. Prerequisites: CHEM 2453 and CHEM 3811.

CHEM 3820 Biochemistry Lab (3 Credits)
Purification and properties of biological molecules and structures. Lab fee associated with this course. Prerequisites: CHEM 3811 AND (CHEM 2011 OR CHEM 2270).

CHEM 3831 Advanced Protein Biochemistry (3 Credits)
This course provides fundamental insights into the chemistry and physics of proteins. It investigates how amino acids form proteins with highly complex three-dimensional structures and how these structures mediate function. We examine key research articles and their contribution to our current understanding of proteins. Topics range from protein folding to enzyme kinetics and emphasize basic principles. Prerequisites: CHEM 2453 and instructor permission.

CHEM 3980 Internship-Undergraduate (0 Credits)
Practical work experience.

CHEM 3991 Independent Study (1-10 Credits)
May be repeated for credit.

CHEM 3995 Independent Research (1-10 Credits)
Research project conducted under guidance of a faculty member. Credit hours and projects arranged on an individual basis. May be repeated for credit.