COMPUTER SCIENCE (COMP)

COMP 3001 C and C++ Programming Foundations for New Graduate Students (4 Credits)
This accelerated course covers the basics of discrete mathematics including functions, relations, counting, logic, proofs etc that is necessary to attend CS graduate school. In addition, it includes an introduction to programming and algorithm analysis. Enrollment restricted to graduate students.

COMP 3002 C and C++ Foundations II for New Graduate Students (4 Credits)
This accelerated course continues to build on the basics of discrete mathematics by covering material including advanced counting, recurrences, graphs, trees, traversals, automata etc. that is necessary to attend Computer Science graduate school. In addition, it includes an introduction to additional algorithms and data structures. Prerequisite: COMP 3001.

COMP 3003 Foundations in Computer Systems (4 Credits)
This course introduces computer systems, including instruction set architectures; memory hierarchies including registers, caching, virtual memory, paging, and segmentation; number representations; binary arithmetic and operations; assembly language instructions; and pipelining in the CPU.

COMP 3004 Foundations in Discrete Structures & Algorithms (4 Credits)
Both discrete mathematics and an understanding of algorithms along with their analysis form principle foundations in computer science. In this course, the fundamentals of discrete mathematics including functions, relations, counting, logic, proofs, counting, recurrences, and probability are covered. In addition, beginning data structures and algorithms are covered including linked-lists, graphs, hash-tables, sorting, and binary search. An analysis of these data structures and algorithms is also covered through big-O notation and proof methods.

COMP 3005 Foundations in Python Programming (4 Credits)
This accelerated course covers the basics of Python programming. By the end of the course students will be able to develop, design and implement Python programs, explain the differences between data types, learn to read from and write to files, understand and use data structures, understand and use recursion, and use Python packages.

COMP 3006 Python Software Development (4 Credits)
This accelerated course covers advanced Python programming for data scientists and cybersecurity professionals. Course Objectives: name and demonstrate proficiency using advanced Python programming techniques; analyze a programming task and create a development plan and high-level software design that accomplishes the task; relate common portions of the Python standard library to specific programming tasks; understand and apply aspects of the Python scientific programming ecosystem to achieve an analysis goal. Prerequisite: COMP 3005.

COMP 3007 Foundations in Data Science Mathematics I (4 Credits)
This course presents the elements of calculus essential for work in data science. Students will study differentiation and integration in the context of probability density and of optimization.

COMP 3008 Foundations in Data Science Mathematics II (4 Credits)
This course presents the elements of linear algebra and discrete math essential for subsequent coursework in data science.

COMP 3200 Discrete Structures (4 Credits)
Discrete mathematical structures and non-numerical algorithms; graph theory, elements of probability, propositional calculus, Boolean algebras; emphasis on applications to computer science. Cross-listed as MATH 3200. Prerequisites: (COMP 2300 or MATH 2200) and (COMP 2673 or COMP 1353).

COMP 3351 Programming Languages (4 Credits)
Learn the fundamentals of programming languages through functional programming through an in-depth understanding of syntax and semantics around program structures and how programming languages are parsed and interpreted. Understand recursion as a fundamental problem-solving paradigm and the important role that higher order types and kinds play in eliminating errors and simplifying software development. Prerequisites: COMP 2370 and ((COMP 2355, COMP 2691) or COMP 2361) or COMP 2362).

COMP 3352 Elements of Compiler Design (4 Credits)
Techniques required to design and implement a compiler; topics include lexical analysis, grammars and parsers, type-checking, storage allocation and code generation. Prerequisite: COMP 3351.

COMP 3353 Compiler Construction (4 Credits)
Design and implementation of a major piece of software relevant to compilers. Prerequisite: COMP 3352.

COMP 3356 Introductory C/C++ Programming (4 Credits)
This course introduces unmanaged programming language concepts to students whose primary programming experience is in a managed language (Java/Python, etc.). Concepts like type safety, manual memory management and “unsafe” library functions are covered. Common pitfalls in these languages from which most security issues arise are explained and students gain experience in understanding such code and evaluating it for program errors. Students will also be introduced to important compiled language concepts of static/dynamic linking, compilation and debugging. Prerequisites: COMP 3006.

COMP 3361 Operating Systems I (4 Credits)
Operating systems functions and concepts; processes, process communication, synchronization; processor allocation, memory management in multiprogramming, time sharing systems. Prerequisites: for undergraduates: (COMP 2355 and COMP 2691) or COMP 2361; COMP 2370; for graduate students: COMP 3003, 3004, and 3005.
COMP 3371 Data Structures & Algorithms (4 Credits)
Design and analysis of algorithms and data structures; asymptotic complexity, recurrence relations, lower bounds; algorithm design techniques such as incremental, divide-and-conquer, dynamic programming, iterative improvement, greedy algorithms; randomized data structures and algorithms. Prerequisites: COMP 2370 or equivalent and COMP 3200.

COMP 3372 Advanced Algorithms (4 Credits)
Advanced techniques for the design and analysis of algorithms and data structures; amortized complexity, self-adjusting data structures; randomized, online, and string algorithms; NP-completeness, approximation and exact exponential algorithms; flow networks.

COMP 3381 Software Engineering I (4 Credits)
An introduction to software engineering. Topics include software processes, requirements, design, development, validation and verification and project management. Cross-listed with COMP 4381. Prerequisites: COMP 3351; COMP 3361 or COMP 2362; or instructor permission.

COMP 3382 Software Engineering II (4 Credits)
Continuation of COMP 3381. Topics include component-based software engineering, model-driven architecture, and service-oriented architecture. Prerequisite: COMP 3381.

COMP 3400 Advanced Unix Tools (4 Credits)
Design principles for tools used in a UNIX environment. Students gain experience building tools by studying the public domain versions of standard UNIX tools and tool-building facilities. Prerequisites: COMP 2400 and knowledge of C and csh (or another shell), and familiarity with UNIX.

COMP 3411 Web Programming II (4 Credits)
In this course you will learn how to develop a full-stack web application that is capable of serving dynamic content from a database. Furthermore, you will learn the core design concepts and principles that will enable you to develop scalable and easy to maintain web applications - a set of skills that will serve you well in both your personal and professional projects in the future. Prerequisite: COMP 3410.

COMP 3412 Web Projects: Web Development III (4 Credits)
In this course you will learn how to develop, as a group, a full-stack web application that is capable of serving dynamic content from a database. We will use the MongoDB, ExpressJS, Angular, and Node.js (MEAN) software stack to work on a real-life problem presented to us by an external product owner. In the class we will use the Scrum framework for Agile development to work, as a software team, through several sprints of development. You will be peer reviewing each other throughout the course, and the product owner will also be reviewing your product through end-of-sprint demos as features are completed. The goal for this class is for it to be a fun, collaborative, and educational environment that demonstrates what it is like to work as a real software team. Prerequisite: COMP 3411.

COMP 3421 Database Organization & Management I (4 Credits)
An introductory class in database management systems covering both relational and non-relational databases with an emphasis on relational. Topics include database design, ER modeling, relational algebra, SQL, scripting, and embedded SQL. Each student will design, load, query and update a nontrivial database using a relational database management system (RDBMS). In addition, an introduction to a NoSQL database will be included. Graduate students will read one or two relevant technical papers and write a summary report. Prerequisites: for undergraduates: COMP 1353 or COMP 2673; for graduates: COMP 3005.

COMP 3424 NoSQL Databases (4 Credits)
In this course, students learn what NoSQL databases are, learn to identify the differences between them, and gain a fundamental understanding between SQL, relational databases, and NoSQL databases. Students further explore which type of NoSQL database is the correct one given a use-case, examining types, methods of communicating with it, contrasts to other NoSQL databases, performance and scalability. Prerequisites: for undergraduates, COMP 2355 or COMP 2361; for graduates: COMP 3005.

COMP 3431 Data Mining (4 Credits)
Data Mining is the process of extracting useful information implicitly hidden in large databases. Various techniques from statistics and artificial intelligence are used here to discover hidden patterns in massive collections of data. This course is an introduction to these techniques and their underlying mathematical principles. Topics covered include: basic data analysis, frequent pattern mining, clustering, classification, and model assessment. Prerequisites: COMP 2370.

COMP 3501 Introduction to Artificial Intelligence (4 Credits)
Introduces a variety of Artificial Intelligence concepts and techniques, relevant to a broad range of applications. Students survey multiple techniques including search, knowledge representation and reasoning, probabilistic inference, machine learning, and natural language processing. Examines concepts of constraint programming, evolutionary computation and non-standard computation. Prerequisites: COMP 2370.

COMP 3521 Computer Networking (4 Credits)
An introduction to computer networks with an emphasis on Internet protocols. Topics include: internet design, application layer protocols such as SMTP and HTTP, session layer protocols including TCP and UDP, the internet protocol (IP), link layer technology such as Ethernet, and security issues related to networking. Programming experience of client/server architectures using sockets and TCP/UDP through projects is emphasized. Prerequisites: for undergraduates: (COMP 2355 or COMP 2361) and COMP 2370; for graduates COMP 3004 and COMP 3006. Cross listed with COMP 4621.
COMP 3681 Networking for Games (4 Credits)
Implementing the networking code for multiplayer games is a complex task that requires an understanding of performance, security, game design, and advanced programming concepts. In this course, students are introduced to the networking stack and how this is connected to the Internet, learn how to write protocols for games, and implement several large games using a game engine that demonstrate the kind of networking and protocols required by different genres of games. In addition, tools are introduced that help understand and debug networking code, simplify the creation of protocols, and make the development of networking code easier.

COMP 3701 Topics in Computer Graphics (4 Credits)
COMP 3702 Topics in Database (4 Credits)
COMP 3703 Topics-Artificial Intelligence (4 Credits)
COMP 3704 Advanced Topics: Systems (4 Credits)
COMP 3705 Topics in Computer Science (1-4 Credits)
COMP 3731 Computer Forensics (4 Credits)
Computer Forensics involves the examination of information contained in digital media with the aim of recovering and analyzing latent evidence. This course will provide students an understanding of the basic concepts in preservation, identification, extraction and validation of forensic evidence in a computer system. The course covers many systems level concepts such as disk partitions, file systems, system artifacts in multiple operating systems, file formats, email transfers, and network layers, among others. Students work extensively on raw images of memory and disks, and in the process, build components commonly seen as features of commercial forensics tools (e.g. file system carver, memory analyzer, file carver, and steganalysis). Prerequisites: COMP 3361; COMP 2355 or 2361 for undergraduates; COMP 3006 for graduates.

COMP 3801 Introduction Computer Graphics (4 Credits)
Fundamentals of 3D rendering including the mathematics behind coordinate systems, projections, clipping, hidden surface removal, shadows, lighting models, shading models, and mapping techniques. Significant use of 3D APIs through shader programming is covered along with the basics of 3D model representation and animations. Satisfies “Advanced Programming” requirements for graduate students. Prerequisites: COMP 2370, MATH 1952 or 1962.

COMP 3821 Game Programming I (4 Credits)
Introduces the fundamentals of digital game programming that are essential as future game programmers or game designers. Students have the opportunity to learn game engine architecture, 2D and 3D linear algebra for graphics, sprites and animations, input handling, finite state machines, particle systems, user interfaces, game audio, and artificial intelligence for games. Prerequisites: COMP 2370 and COMP 2821.

COMP 3822 Game Programming II (4 Credits)
In this course, students learn how to work with a 3D game engine and build 3D games. Topics include algorithms, mathematics for 3D game engines, scene management, animations, 3D shaders, particle systems, physics for games, UIs, terrain systems, and working with higher-level scripting languages on top of the low-level implementation language. Prerequisites: COMP 3821. Suggested corequisite or prerequisite: COMP 3801.

COMP 3833 Parallel and Distributed Computing (4 Credits)
Current techniques for effective use of parallel processing and large scale distributed systems. Programming assignments will give students experience in the use of these techniques. Specific topics will vary from year to year to incorporate recent developments. This course qualifies for the Computer Science "Advanced Programming" requirement. Prerequisites: COMP2370 and COMP2355, or equivalent.

COMP 3904 Internship/Co-Op in Computing (0-10 Credits)
Practical experience in designing, writing and/or maintaining substantial computer programs under supervision of staff of University Computing and Information Resources Center. Prerequisites: COMP 2370 and approval of internship committee (see department office).

COMP 3991 Independent Study (1-10 Credits)
Cannot be arranged for any course that appears in the regular course schedule for that particular year.

COMP 4100 Human-Computer Interaction (4 Credits)
Introduces students in computer science and other disciplines to principles of and research methods in human-computer interaction (HCI). HCI is an interdisciplinary area concerned with the study of interaction between humans and interactive computing systems. Research in HCI looks at cognitive and social phenomena surrounding human use of computers with the goal of understanding their impact and creating guidelines for the design and evaluation of software, interfaces, physical products, and services in industry. No prerequisites are required to take the course and students from all disciplines are welcome. Cross listed with COMP 3100.

COMP 4333 Parallel and Distributed Computing (4 Credits)
Current techniques for effective use of parallel processing and large scale distributed systems. Programming assignments will give students experience in the use of these techniques. Specific topics will vary from year to year to incorporate recent developments. This course qualifies for the Computer Science “Advanced Programming” requirement. Prerequisites: COMP2370 and COMP2355, or equivalent.

COMP 4334 Parallel and Distributed Computing for Data Science (4 Credits)
Current techniques for effective use of parallel processing and large-scale distributed systems for data science. Programming assignments will give students experience in the use of these techniques. Specific topics will vary from year to year to incorporate recent developments. This course is not to be used for the MS Computer Science. Prerequisite: COMP 4581.

COMP 4355 Advanced System Programming (4 Credits)
This course covers programming in a UNIX environment, including use of common command line utilities, scripting, source control via Git, and integration of POSIX system calls into C/C++ code. These features will be leveraged to solve practical problems cleanly and efficiently. More emphasis will be placed on using these features than on how those features work. Prerequisites: COMP 3001, 3002, 3003, and 3004.

COMP 4362 Operating Systems II (4 Credits)
Continuation of COMP 3361. Case studies of existing operating systems programing. Prerequisite: COMP 3621.
COMP 4370 Algorithmic Problem Solving (4 Credits)
The course is intended for students who are familiar with programming syntax but have not had much experience writing computer programs to solve a problem stated as a high-level description. The course will run through multiple such problem descriptions, discuss the design of programs to solve those problems using popular data structures, and have students implement those designs using a programming language. This course does not count for MS Computer Science requirements. Prerequisites: COMP 3001, 3002, 3003, and 3004.

COMP 4372 Advanced Algorithms (4 Credits)
Advanced techniques for the design and analysis of algorithms and data structures; amortized complexity, self-adjusting data structures; randomized, online, and string algorithms; NP-completeness, approximation and exact exponential algorithms; flow networks. Prerequisite: COMP 3371. Cross listed with COMP 3372.

COMP 4384 Secure Software Engineering (4 Credits)
This course is concerned with systematic approaches for the design and implementation of secure software. While topics such as cryptography, networking, network protocols and large scale software development are touched upon, this is not a course on those topics. Instead, this course is on identification of potential threats and vulnerabilities early in the design cycle. The emphasis in this course is on methodologies and paradigms for identifying and avoiding security vulnerabilities, formally establishing the absence of vulnerabilities, and ways to avoid security holes in new software. There are programming assignments designed to make students practice and experience secure software design and development. Prerequisites: COMP 3006, COMP 3361, COMP 3356.

COMP 4401 Introduction to Python for Data Science (2 Credits)
This eight-week course enables aspiring graduate students in data science to meet their Python programming proficiency prior to matriculation. Students who complete this course will be able to write and modularize code, design efficient control structures, perform basic data operations, debug errors, distinguish data types and basic structures, and work within an integrated development environment.

COMP 4431 Data Mining (4 Credits)
Data Mining is the process of extracting useful information implicitly hidden in large databases. Various techniques from statistics and artificial intelligence are used here to discover hidden patterns in massive collections of data. This course is an introduction to these techniques and their underlying mathematical principles. Topics covered include: basic data analysis, frequent pattern mining, clustering, classification, and model assessment. Prerequisites: COMP 4441 and COMP 4581.

COMP 4432 Machine Learning (4 Credits)
This course will give an overview of traditional machine learning techniques, their strengths and weaknesses, and the problems they are designed to solve. This will include the broad differences between supervised/unsupervised and reinforcement learning as well as associated learning problems such as classification and regression. Techniques covered, at the discretion of the instructor, may include approaches such as linear and logistic regression, support vector machines, KNN, decision trees, random forests, Naive Bayes, EM, k-Means, and PCA. After course completion, students will have a working knowledge of these approaches and experience applying them to learning problems. Enforced Prerequisites: COMP 4442 and COMP 3006.

COMP 4433 Data Visualization (4 Credits)
This course explores visualization techniques and theory. The course covers how to use visualization tools to effectively present data as part of quantitative statements within a publication/report and as an interactive system. Both design principles (color, layout, scale, and psychology of vision) as well as technical visualization tools/languages will be covered. Prerequisites: COMP 3006.

COMP 4441 Introduction to Probability and Statistics for Data Science (4 Credits)
The course introduces fundamentals of probability for data science. Students survey data visualization methods and summary statistics, develop models for data, and apply statistical techniques to assess the validity of the models. The techniques will include parametric and nonparametric methods for parameter estimation and hypothesis testing for a single sample mean and two sample means, for proportions, and for simple linear regression. Students will acquire sound theoretical footing for the methods where practical, and will apply them to real-world data, primarily using R. Prerequisites: COMP 3007 and 3008, or permission of Data Science Faculty Director.

COMP 4442 Advanced Probability and Statistics for Data Science (4 Credits)
This course builds on material in Probability and Statistics 1. Students will carry out model fitting and diagnostics for multiple regression, ANOVA, ANCOVA, and generalized linear models. Dimension reductions techniques such as PCA and Lasso are introduced, as are techniques for handling dependent data. The course introduces the principles of resampling and Bayesian Analysis. Students will acquire sound theoretical footing for the methods where practical, and will apply them to real-world data, primarily using R. Enforced Prerequisites: COMP 4441.

COMP 4447 Data Science Tools 1 (4 Credits)
Organizations are using data science to extract actionable insight from data. To highlight the hidden patterns in the data, this course equips students with essential skills for data collection, cleanup, transformation, feature engineering, summarization, visualization, and collaboration. Students will do assignments and a final project. This is a hands-on course. Students will use Python libraries, Linux commands, API requests, web-scraping, GitHub and various data sets to perform these activities. Prerequisites: COMP 3006.

COMP 4448 Data Science Tools 2 (4 Credits)
Building a successful predictive model is a multi-faceted process. This course focuses on hypothesis testing and the development of predictive models. Students will learn the data science process for model development while learning to program a variety of predictive algorithms. Students will do assignments and a final project. This is a hands-on course. Students will use Python libraries, Linux commands, and various data sets to perform these activities. Prerequisite: COMP 4447.
COMP 4449 Data Science Capstone (4 Credits)
Data Science Capstone provides students an opportunity to demonstrate their expertise as data scientists. Students are expected to integrate prior knowledge and skills to design, develop, test, and present 'full-cycle' data science products, and apply them in real-world contexts. This includes assessing and communicating their value to decision-making. Two sets of challenges of increasing complexity are presented as mid-term and term projects. These two projects are implemented, documented, tested, and presented by the students or students' two-person teams. Prerequisites: COMP 4442.

COMP 4455 Shell Scripting and System Tools (4 Credits)
This course covers navigating and utilizing tools in a UNIX environment, including use of common command line utilities, Bash and Python shell scripting, source control via Git, pipes and I/O redirection, networking in Python and OS multi-processing/multi-threading. More emphasis will be placed on using these tools than on how those tools work. Prerequisite: COMP 3006.

COMP 4510 Software for AI Robotics (4 Credits)
This course provides an introduction to the key artificial intelligence issues involved in the development of intelligent robotics. We will examine a variety of algorithms for autonomous mobile robot behavior, exploring issues that include software control architectures, localization, navigation, sensing, planning, and uncertainty. We also introduce the Robot Operating System (ROS) middleware, which is popular in academic, industry, and government research. This course does not assume any prior knowledge of artificial intelligence or robotics. The course will be project focused. In the project assignments you will learn ROS and learn to implement algorithms essential for conducting AI robotics research. Prerequisites: COMP 3005 and proficiency in Python and Unix command-line tools.

COMP 4531 Deep Learning: Model Design and Application (4 Credits)
This class deals with the design and implementation of efficient algorithms for problems defined over geometric objects, such as points, lines, polygons, surfaces, etc. The methods and algorithms covered find applications in many areas, including computer graphics (e.g., hidden surface removal), computer-aided design and manufacturing (e.g., 3D printing), machine learning (e.g., supervised and unsupervised classification), geographic information systems (e.g. terrain visibility), robotics (e.g., motion planning), data mining (e.g., dimensionality reduction), and computer vision (3D reconstruction), to name a few. Fundamental geometric problems such as partitioning, proximity, intersection, convexity, visibility, point location, and motion planning are focused on. Efficient data structures and algorithms for their solutions and design techniques germane to the field, such as divide-and-conquer, plane sweep, randomization, duality, etc., are discussed in detail. Practical methods for the robust implementation of geometric algorithms are also covered. Prerequisites: COMP 3006.

COMP 4581 Algorithms for Data Science (4 Credits)
This course introduces the design and analysis of algorithms within the context of data science. Topics include; asymptotic complexity and algorithm design techniques such as incremental, divide and conquer, dynamic programming, randomization, greedy algorithms, and advanced sorting techniques. Examples to illustrate techniques are drawn from multi-dimensional clustering (k-means and probabilistic), regression, decision trees, order statistics, data mining using apriori algorithms, and algorithms for generating combinatorial objects. Prerequisites: COMP 3006.

COMP 4591 Computational Geometry (4 Credits)
This class deals with the design and implementation of efficient algorithms for problems defined over geometric objects, such as points, lines, polygons, surfaces, etc. The methods and algorithms covered find applications in many areas, including computer graphics (e.g., hidden surface removal), computer-aided design and manufacturing (e.g., 3D printing), machine learning (e.g., supervised and unsupervised classification), geographic information systems (e.g. terrain visibility), robotics (e.g., motion planning), data mining (e.g., dimensionality reduction), and computer vision (3D reconstruction), to name a few. Fundamental geometric problems such as partitioning, proximity, intersection, convexity, visibility, point location, and motion planning are focused on. Efficient data structures and algorithms for their solutions and design techniques germane to the field, such as divide-and-conquer, plane sweep, randomization, duality, etc., are discussed in detail. Practical methods for the robust implementation of geometric algorithms are also covered. Prerequisites: COMP 3200 and COMP 3371. This course satisfies the Theory requirement for graduate students.

COMP 4600 Seminar in Computer Science (0-4 Credits)
Preparation and presentation of lectures on some aspect of current research in computer science; topics not generally encountered in formal courses, may include robotics, pattern recognition, parallel processing, computer applications. 10- to 15- page paper with bibliography required.

COMP 4621 Computer Networking (4 Credits)
The Internet is arguably the most transformative invention in recent history and is at its core a massive global computer network (of networks). Students in this course learn how the Internet works, from the highest-level application layer to the lowest-level hardware layer. Topics covered include the OSI and TCP/IP reference models, physical transmission methods, error detection and correction, addressing, routing algorithms, congestion control and more. Prerequisites: COMP 3006, COMP 3361 (or instructor approval). Cross listed with COMP 3621.
COMP 4701 Special Topics-Computer Graphics (1-4 Credits)
COMP 4702 Advanced Topics-Database (3 Credits)
COMP 4703 Adv Topics-Artificial Intell (1-4 Credits)
COMP 4704 Advanced Topics-Systems (3-4 Credits)
COMP 4705 Advanced Topics-Programming (1-4 Credits)
COMP 4709 Special Topics-Computer Security (3 Credits)
COMP 4721 Computer Security (4 Credits)
This course gives students an overview of computer and system security along with some cryptography. Some network security concepts are also included. Other concepts include coverage of risks and vulnerabilities, policy formation, controls and protection methods, role-based access controls, database security, authentication technologies, host-based and network-based security issues. Prerequisites: COMP 3006, COMP 3361 (or advisor/instructor approval).

COMP 4722 Network Security (4 Credits)
Network Security covers tools and techniques employed to protect data during transmission. It spans a broad range of topics including authentication systems, cryptography, key distribution, firewalls, secure protocols and standards, and overlaps with system security concepts as well. This course will provide an introduction to these topics, and supplement them with hands-on experience. In addition, students will perform an extensive analysis, or development of a security related product independently. Prerequisites: COMP 4721.

COMP 4723 Ethical Hacking (4 Credits)
Ethical hacking is the process of probing computer systems for vulnerabilities and exposing their presence through proof-of-concept attacks. The results of such probes are then utilized in making the system more secure. This course will cover the basics of vulnerability research, footprinting targets, discovering systems and configurations on a network, sniffing protocols, firewall hacking, password attacks, privilege escalation, rootkits, social engineering attacks, web attacks, and wireless attacks, among others. Prerequisites: COMP 3361, or COMP 3001, 3002, 3003, and 3004.

COMP 4724 Systems Security Management (4 Credits)
This course covers basic system administration tasks on a Unix environment, with a special focus on command line navigation, file/process access control, setting up network configurations, and managing services related to networks and their security. Prerequisites: COMP 3001, 3002, 3003, and 3004.

COMP 4732 Human-Centered Data Security and Privacy (4 Credits)
With an increasing digital presence, it is critical to understand users’ needs and requirements in using technological equipment to secure interactions and adhere to privacy perceptions. Thus, it is essential to analyze the cognitive, social, organizational, commercial, and cultural factors in mind. This course will provide a socio-technical approach for analyzing critical user interaction with devices encountered in everyday life, including web, mobiles, and wearables. This course will help students develop an understanding of technological interactions from the perspectives of multiple stakeholders such as users, developers, system administrators, and others and build tools to protect user data.

COMP 4799 Capstone Project in Cybersecurity (1-8 Credits)
The purpose of the cybersecurity capstone project is to provide an integrative experience that ties together the learning outcomes from academic coursework undertakings and industry skills necessary to be productive in delivering an end product. Students will engage in one of many options available, such as involvement in a research project, a case study, a product development project, or an extensive survey paper. Capstone projects are presented at the end of the quarter in front of a representative group. Prerequisites: COMP 3001, 3002, 3003, and 3004.

COMP 4991 Independent Study (1-12 Credits)
Independent study on a particular topic supervised by a faculty member. Student must find a faculty member who will supervise work on the topic. Cannot be arranged for any course that appears in regular course schedule for that particular year.

COMP 4995 Independent Research (1-17 Credits)
Research projects undertaken in conjunction with a faculty member.

COMP 5991 Independent Study (1-17 Credits)
COMP 5995 Independent Research (1-17 Credits)